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ENTROPY ANALYSIS OF KINETIC FLUX VECTOR SPLITTING SCHEMES
FOR THE COMPRESSIBLEEULER EQUATIONS *

SHIUHONGLUIt ANDKUNXU$

Abstract. FluxVectorSplitting(FVS)schemeis onegroupof approximateRicmannsolversfor the
compressibleEulerequations.In thispaper,thediscretizedentropyconditionof theKineticFlux Vector
Splitting(KFVS)schemebasedonthegas-kinetictheoryis proved.Theproofof theentropycondition
involvestheentropydefinitiondifferencebetweenthedistinguishableandindistinguishableparticles.
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1. Introduction. Therearemanynumericalapproachesto thesolutionof theEulcrequations.Go-
dunovandBoltzmannschemesaretwoof them[4]. Broadlyspeaking,Godunovschemeis basedon the
Riemannsolutionin thegasevolutionstage,andtheBoltzmannschemeusesthemicroscopicparticledistri-
butionfunctionasthebasisto constructthefluxes.Whiletheconstructionmethodologyisdifferentbetween
theGodunovandkineticschemes,bothfirstorderschemescanbewrittenin theframeworkofthe3-point
conservativemethods.

Therearcmainlytwokindsofgas-kineticschemes,andthedifferencesarein thegoverningequations
in thegasevolutionstage.Oneof thewell-knownkineticschemesis calledKFVSwhichis basedonthe
collisionlessBoltzmannequation[9,10],andtheotheris basedonthe collisionalBGK model[15]. By
combiningthedynamicaleffectsfromtilegasevolutionstageandprojectionstage,therealgoverningequation
forbothKFVSandBGKschemesarcphysicallythesameexcepttheparticlecollisiontimer in the BGK

scheme is replaced by the CFL time step At in the KFVS scheme [14].

The previous paper [11] analyzed the positivity property, such as positive density and pressure, for the

gas-kinetic scheme. In this sequel, wc analyze the entropy condition for the first order KFVS schemes.

2. Preliminaries. We consider the one dimensional Euler equations of gas dynamics:

Pt + m. = O,
(2.1) rn, + (mU + p). = O,

Et + (EU + pU), = O,

1 pU 2 + pc the energy per unit mass, ewhere p is the density, U the velocity, m = pU the momentum, E =

the internal energy density, p the pressure. We assume that the gas is a "y-law gas, i.e., p = (_- 1)pc. In order

to obtain the approximate solution for the above equations, the gas-kinetic scheme solves the Boltzmann

equation in the gas evolution stage.
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The Boltzmann cquation in the 1-D case is [6]

ft + ufx = Q(f, f),

where f is the gas-distribution function, u the particle velocity, and Q(f, f) the collision term. The collision

term is an integral function which accounts for the binary collisions. In most cases, the collision term can

be simplified and the BGK model is the most successful one [1],

Q(f, f) = (g - f)/T,

where g is the equilibrium state and T the collision time. For the Euler equations, the equilibrium state g is

a Maxwellian,

(2.2) g = p e-X((_-u)2+_2),

where _ is a K dimensional vector which accounts for the internal degrees of freedom, such as molecular

rotation and vibrations, and 42 = _12+ _2 +... + _:. Note that K is related to the specific heat ratio 3',

K= (3 - 3")/(7 - 1).

Monotonic gas has 7 = 5/3, and diatomic gas has 3' --- 1.4. The lower limit of 3' is 1, which corresponds

to an infinite number of internal degrees of freedom. For example, 7 -- 103/101 is equivalent to K = 100,

which gives 98 internal degrees of freedom for the molecule. In the equilibrium state, A is related to the gas

temperature T

m

2kT'

where rn is molecular mass and k the Boltzmann constant.

The connection between the distribution function f and macroscopic flow variables is

(p, m, E) T = / ¢c, fdud_,

where d_ = d_ad(2...d_K and

_ba ----(1, u, _(u 2 + _2))T

are the moments of density p, momentum rn and total energy E. The fluxes for the corresponding macroscopic
variables are

f

(2.3) (Fp, Fm FE) T = J u g,J du d_ .

The conservation principle for mass, momentum and energy during the course of particle collisions requires

Q(f, f) to satisfy the compatibility condition

Q(f, f)¢,_dud_ = O, o_= 1, 2, 3.

In the 1-D case, the entropy condition for the Boltzmann equation is

OH OG

a--/-+ _<0,



where the entropy density is

and the corresponding entropy flux is

H = f f in fdud_

g

G = I uf In f dud_.

The first-order numerical conservative scheme can bc written as

W? +1 = _5 n + ff(F?_l/2 - V?+l/2) ,

where l_ = (pj,mj, Ej) T is the cell averaged conservative quantities, F)+l/2 is the corresponding fluxes

across the cell interface, and a = At/Ax. For the 1st-order gas-kinetic scheme, the numerical fluxes across

cell interface depend on the gas distribution function fj_+i/2 via (2.3). The discrctized entropy condition for

the above 3-point method is

At n n
(2.4) H'f +1 < II_ + _xx(Gj_l/2 - Gj+I/z) ,

where Hj = f fj in fjdud_ is the cell averaged entropy density and Gj+I/2 = f uf_+l/2 ln fj+a/2dud_ is the

entropy flux across a cell interface. In this paper, we prove the above inequality for the KFVS scheme. Since

the KFVS scheme assumes an equilibrium distribution inside cell j at the beginning of each time step, H_
becomes

n n _K + 1 , A)' _ 1). (with the equilibrium distribution in Eq.(2.2))(2.5) = pj inpj +pj ---_(ln _-

Since at the beginning of each time step, the gases in the cells j - 1, j, and j + 1 are basically distinguishable,

the updated flow variables W_ +1 inside cell j at time step n+ 1 are composed of three distinguishable species

from cells j - 1,j, and j + 1. So, the total entropy density It'_ +1 is the addition of the entropy of different

species.

It is very difficult get a rigorous proof of the diseretized entropy condition (2.4) for the nonlinear hy-

perbolic system. The difficulty is mostly in the interaction between numerical gas from different cells. The

update of the entropy in each cell is a complicated function of all flow variables including the ones from the

surrounding cells. Since the entropy condition only tells us the possible direction for a system to evolve, it

does not point out exactly which way to go. So, in order to analyze the entropy condition for the discretized

scheme, we design a "physical path" for the gas system to evolve. With the same initial and final conditions

for the mass, momentum and energy inside each cell, the proof of the entropy condition becomes the proofs

of the entropy-satisfying solution in each section of the physical path. Fortunately, for the KFVS scheme, we

can design such a physical process. To show (2.4), we use results in statistical mechanics about the definition

of entropy for distinguishable and indistinguishable particles.

3. KFVS Scheme. In this section we consider the kinetic flux-splitting scheme (i.e. collisionless

scheme) proposed by Pullin [10] and Deshpande [2]. The scheme uses the fact that the Euler equations

(2.1) are the moments of the Boltzmann equation when the velocity repartition function is Maxwellian. As

numerically analyzed in [7], the flux function of the KFVS scheme is almost identical to the FVS flux of

van Leer [13]. In Section 3.1 we briefly recall the eollisionless scheme. In Section 3.2 we prove the entropy

condition for KFVS under the standard CFL condition. The positivity of the KFVS scheme has been

analyzed in [3, 9, 11].



3.1. Numerical scheme. In order to derive the collisionless Boltzmann scheme, wc need to construct

the numerical fluxes across each cell interface. We suppose that the initial data (p(x),m(x),E(x)) are

piecewise constant over the cells Cj = [x a 1/2, Xj+l/2]. At each time level, once pj, mj and Ej are given, the

corresponding Uj and A a can bc obtained by the following formulae:

1 K + 1
(3.1)

m = pC, E = _pU 2 -4- -_ p.

Let

K+i

(3.2) gj = pj e _J((u-Uj)e+(2)

bca Maxwellian distribution in the cell Cj. The corresponding distribution function at the cell interface is

defined by

[

(3.3) f(xj+l/2, t, u, _) = _ gj' if u > 0

t 9j+l, ifu < 0.

Using the formulae (2.3), we obtain the numerical fluxes

(3.4)
Fp'j+I/2 )

Yrn,j+l/2 = pj

Fz,3+1/2

+Pj+I (
+ ¢rfc(-v%Uj)+

(U_4 A- --_f-j _j]K+31T'_erfc(--V/_Uj) q_ (_ +___j]K+2"_ _e-xJu_

1 e-- "kJ -b I U2+ 1

_erfc(_Vj+,) 2

K+3 U _ • K+2
e. - A3+I U_+ 1

where the complementary error function, which is a special case of the incomplete gamma function, is defined

by

2 f_
erfc(x) = _ j_ e-Qt.

Using the above numerical fluxes, we are able to update pj, mj, Ej with the standard conservative formula-

tions:

(3.5) fftj = mj + a
Fp,j-v2-Fp,j+I/2 )

Frn,j_l/2 - Fro,j+1� 2 ,

FE,j_I/2 -- FE,j+I/2

where 12Vj = _¢_n+1 and

At
6t-

Ax'

with At the stcpsizc in time, and Ax the mesh size in space. The scheme can bc viewed as consisting of the

following three steps (although it is not typically implemented this way):



ALGORITHM (KFVS Approach)

1. Given data {py, Uj', E_}, compute {)_} using (3.1).

2. Compute the numerical flux {Fp,j+I/2,Fm,j+I/2, FE,j+I/2} using (3.4).

,, _ , ,+1 _.1 E_+I}.3. Update {pj,mj,E'_} using (3.5). This gives lPj ,mj ,

3.2. Entropy analysis. The analysis of entropy condition for the KFVS scheme has attracted some

attention in the past years. In [2], Deshpandc stated the entropy condition in the smooth flow regions. In

[5], Khobalattc and Pcrthame gave a proof of the maximum principle entropy condition for a gas kinetic

scheme with a specific equilibrium distribution and a piecewise constant entropy function. In [8], an entropy

inequality is introduced for a special distribution function. In this section, for the first time, we show that at

the discretizcd level, the KFVS scheme satisfies the entropy condition with the exact equilibrium Maxwcllian

distribution.

With the same initial and final mass, momentum and cnergy densities in Eq.(3.5), we can design a

physical path for the flow updating process. The proof of the entropy condition is based on the entropy-

satisfying solution in each section of the evolving path.

In the first step, we consider the case when there is only gas flowing out from cell Cj. This gives

mj mj + L<0u%eue - L>0u%e e 
_(u + _ )gjdud_- fu>0 _(u +E_ Ej f_<0 _ 2 2 _ 2 _U)gydud_

The second step is to consider the inflow from adjacent cell Cj_ 1,

(3.7) _V =- rhj = a fu>o u2gj -ldud_

/_j f.>0 _ 27(u +_2)gj ldud_

In the third step, the inflow from adjacent cell Cj+I is considered,

(3.8) W = rhj = a f_<0 u2gj+ ldud_ "

/_J f_<0 _( u2 + _2)gj +ldud_

The fourth step is to include particle collisions to let W*, IPd and W in the above equations to exchange

momentum and energy inside cell j and to form the individual equilibrium states W *_, I_d_ and l/d _ with a

common velocity and temperature,

w= rhj = m_ + rhj + r_j

= rnj mj(3.9) mj, + + .

During the above collisional phase, the individual mass, total momentum and energy are unchanged. It

can be verified that (thj, rhj,/_j) obtained by (3.9) are exactly the same as those obtained by using (3.5).



In termsof updatingconservativevariables,theabovefourstagesformthecompleteKFVSscheme.The
entropydensityH_ +1 at time n + 1 inside cell Cj is the sum of the individual entropy of different species.

Suppose that the CFL condition

(3.10) a <
m_x_(IVjl + Cj)

is satisfied, where cj = _ is the local speed of sound. It has been shown in [11] that the positivity

conditions are precisely satisfied for the flow variables p_ > 0 and p_E) - 1, ,,2 > 0, as well as _j > 0 and_ _tmj) _ _
_j_ _ ½(_)2 > o.

In the following, we prove that the discretized entropy condition is satisfied in the above four physical

processes. As a result, the whole numerical path in the flow updating scheme satisfies the entropy condition

(2.4).

LEMMA 3.1. Assume that the CFL condition is satisfied. If pj > 0 and pjEj > 1 2 then the entropy_ _ _rnj,

condition is satisfied in the updating process for (p;, m;, E_).

Proof. Wc need to show that

/; /? [L L 1(3.11) g_ lng_dud_ <_ gj lngjdud_ + cr ugj lngydud_ - ugj lngjdud_ .
<0 >0

We use the following relations to express the * states in terms of the j states.

p; = pj -- o'pj { _Ujaj + _j } ,

• ,) }m_ = m_- _pj + _ aj + U_j ,

where

e - A j U_

(3.12) aj =erfc (-x/_jUj) -erfc (v/_jUj) ; _j -

The equilibrium state g_ has an Maxwcllian distribution which corresponds to the macroscopic densities

(p;, m;, E;).
After some algebra,

where

/_"• /_" IL L ]g9 lng_dud( - gj lngjdud( - a ugj lngudud ( - ugj lngjdud_ = pjF,
oc oc k u<O >0

{( )( (o ),<+, )o}F= 1--_a(Ujaj+2/3j) (g+2)ln 1-_(U/aj+2f_¢) 2 lnhl - 5_ j ,

hl=l g+laAJ (Uia j + 2/_i) U 2 + 2Aj ] g + 1 -_-_j ]

(2u_+K+2_/3j}+ 2aAj 1 2U_3'j }_/ y-C-f {(u] + _) o,jU_+ -

2_r2Aj 1

K+ 1 + otj + Uj/_j .



(3.13)

Let

The goal is to show that F < 0 for all positive a up to the CFL limit. We can reduce the number of

parameters by one by introducing the non-dimensional number z = v/_Uj which is equivalent to the local

Mach number in cell j. We also replace the parameter c_ by e E (0, 1] (CFL number) which is defined by:

O'--

Izl+ v /2

Then

where

(_j_._ff_z e - z2 e - _2
¢ = 2 + -_- = erf(z)z + --_-,

Z 2
e -2z2 e erf(z) 2

- + z eft(z)

C

d-
Izl+ v -/2

1 e-Z2dF= (1-d¢)ln(1 - de) K+llnh
2 2v_

h = - (K + 1)(1 - d¢)2

We now proceed to show that F = F(z, K, c) < O, where the arguments of the function are related to

Mach number, gas constant, and CFL number, respectively. First note that F is an cvcn function of z and

hence we can restrict to the case z > 0. By a direct calculation, dcp/dz = erf(z) > 0 for z > 0 and thus ¢ is

minimum at z = 0 where it equals 1/v_. This shows that ¢ is a positive function.

Next we show that 1 - de is positive and less than one. Since both d and ¢ arc positive, it is clearly less

than one. To show that it is positive, it is sufficient to show this for c = 1. Noting that c Z2/v_ < 1/v_,

we have

] e z2

• z + _2 - crf(z)z __2
O< v_ v_ < v_ <l-de.

1 1 --

z+_ z+_

1 - d crf(z)z+ + dzerf(z)2

- e-Z2 (1 - de) + derf(z)2 > 0.

From the above, 0 < h < 1.

The key observation is that for any fixed K and z, F attains its maximum at c = 0 or c = 1. To show

this, we explicitly compute the second derivative of F with respect to c,

F" -- d'2gb2 -4- (Z + 1)(1 - d¢)h '2 + d'2erf(z) 2
1 - de 2h 2 2h(1 - de) 3'

where ' denotes differentiation with respect to c. Since F" > 0, F is maximum at c = 0 or c = 1 as claimed.

Hence if F is negative at these values of c, then wc can conclude that F is a negative function.

Now



The first term in the Taylor series expansion of F for small c is

F = -de+ O(c 2)

and hence F is negative for all small c. Wc now restrict to the CFL limit c = 1.

In Figure 4.1, we plot F for Izl < 100 and 2 < K _< 100. It is clear that F is a negative function.

Wc now examine the asymptotic behaviour of F for large values of z. For c E (0, 1) and large Izl,

F = (1 - c)ln(1 - c) + (ln(1 - c) + 1) + O

Hence F < 0 for large Izt.

In paper [11], the positivities for both p_ > 0 and p;E_ - -_ > 0 under the CFL condition have been

proved. So, a distribution function f* with f* > 0 for the state (p;, m;, E_) can be constructed.

Next wc show that entropy increases in the second step where gas moves into cell Cj from its neighboring

cells. It is sufficient to show only the case when gas from the left cell Cj_ 1 moves into cell Cj. Denote the

quantities after one time step by (_bj, rhj, Ej). See (3.7).

Before proving the entropy condition in the above process, from Jensen's inequality, it can be shown
A2

that _j _> 0 and _j/_j - -_ > 0, which means that the state (_j, rhj,/_j) satisfies the positivity condition.

So, a gas distribution function f with f > 0 can also be obtained from this state.

LEMMA 3.2. Assume that _j,dnj,Ej are computed by (3.7). With the CFL condition, the entropy

condition is satisfied in the process to obtain (jbj, rhj,/_j).

Proof. After some algebra, we have

/5 Z , c[?j ln_jdud_ - a ugj-1 lngj_ldud_ = _pj-1 ]z I + V_ F,:>0

where

[(c0)F = ¢ in 2(tzf + Vb-_) + (K + 1)

e-z 2

¢ = z erfc(-z) + _-,

e-2_ e-z 2 erfc(_z)2
_b -- + z erfc(-z)

v/-4 2

e -z2

¢ +__
_._ 2v_'

V/¢2 + K+I

The goal is to show that the entropy condition is satisfied or equivalently, F(z, K, c) < O. As previously,

we have introduced the non-dimensional number z = _Uj-1 and the number c is as defined in (3.13)

but with j changed to j - 1. First note that ¢ > 0 for all real values of z. To show this, note that

d¢/dz = erfc(-z) > 0 and thus the minimum of ¢ occurs at z = -c_ where ¢ = 0. Hence it is apparent that

among the possible values of c E (0, 1], F is maximum at c = 1. Thus it is sufficient to demonstrate that

F < 0 for c = 1. We shall assume this value of c for the remainder of this proof so that F is now a function

of K and z.

It can be shown that _ is negative for all z. Now for a fixed z, the term



in F is maximum when 7 = 1 or K = c_. The second term

¢2 + K+I

is a decreasing function of K. This can be shown by taking its derivative with respect to K and it is

D=- ln(l+y) + 2 1+9,

where

Y - (K + 1)¢ 2.

Note that -1 < y < 0. The derivative D can be shown to be negative for all y c (-1,0). Thus the second

term achieves its maximum at K = 2. Hence wc conclude that

F<¢ In 2(lzI+v/_) -_ln 1+_ +_ =G(z).

For z E (0, oo), Gz < 0 and since G(0) = -.5775..., we have shown that G < 0 on [0, co). For z < 0, G is

maximum at z = -oc. As z _ -o¢, the first term of the asymptotic expansion of G is

3e -z2 In Izl
G_

2v_Z 2

and so it is a negative function for z < 0. Thus we conclude that F is negative and thus the entropy condition

is satisfied. We have finished the proof of the lcmma.

We plot F(z, K) in Figure 4.2.

As a result, we have

_j lngjdud _ <_ a u9j 1 ln9j-ldud(.(3.14)

Similarly, we have

(3.15) F gj ln{ljdud_ <_ -a ugj+l lngj+adud(.
cx) <0

for the particles coming from the cell j + 1 on the right hand side.

After all terms of (p*,m*,E*), (fi, rh,_7), (fi, rh, E) are obtained, the flow variables in each cell Cj

are updated according to Eq.(3.9). Since positivity is satisfied for each species (p*, m*, E*), (/5, rh,/_) and

(p, rn, E), the distribution functions 9",9,9 satisfy the conditions 9* -> 0,_ _> 0,9 _> 0. In the collisional

step, different species with its individual identification W*, 1_ and lYv"are mixed to form equilibrium states

9", 9' and 9' with a common velocity U and temperature A. In the collisional process, the individual mass,

total momentum and energy are conserved, and the individual equilibrium states become

K+I

g*t : P* ('_) 2e-)_((u-U)2+_2)'Tr-

K+I

(3.16) 9'=/5 e _((_ u)_+(a),



I(+1

)P = _ e-X(O '-U)2+_),

where A and U are dctermined from the total momentum and energy conservations Eq.(3.9),

and

(p* + [_+ p)u = m* + rh + r_

LEMMA 3.3.

ProoL Since

K+I. E*(p* +_+#)( u2+ _) = +E+E.

The collision stage from (9", _, O) to (g*', _, 0') satisfies the entropy condition.

g*_>0 , __>o , 0_>0,

and the individual mass, total momentum and energy conservations arc satisfied, we have

f g*'lng*'dud_+ f g'hlO'dud_+ f o'lnO'dud_- f g*lng*dud_- f glngdud_- f glnOdud_

= f(9*'-g')ing*'dud(+/g*In(g*'/g*)dud_+/(j'-j)Inj'dud_+/,ln(j'/j)dud_

= f.- + f,',,n(,,'/,)d..,+/. ln(.'/,)...,

< / ¢(¢'/g" - +/ O(O'/O-1)dud +

=f (."- +f (o'- +f (o'-o).u.,
=0.

In conclusion, we have

(3.17/g*'lng*'dud_ + f 9'lnh'dud_ + f o'lnO'dud_ < f g*lng*dud_+ f glngdudS+ f olnOdud_.

Once we have 9", g' and g', the total entropy of the distinguishable particle system inside cell Cj is

(3.18) H' = / g" ln g *'dud_ + / OPln O'dud_ + / O' ln O'dud,,

and the total distribution function is

g = g*'+g' + 9'
K+I K+I K+I

(3.19) = p* e -x((_-U)_+_2) + _ e -_((u-u)2+_:) + +p e -_((_-U)2+_2)

= (p. + _ + p) e-_((_ u?+_).

With the updated (_, rh,/)) inside cell Cj in Eq.(3.9), the total entropy H_ +_ is composed of the sum of the

individual entropies of three species,

H;+l = H _

: f g*tlng*'dud{+ f O'lnOtdud{+ f O'lnOtdud_

(3.20) =p*lnp*+p *K+l--_-(in _ - 1) + tSlntS+ p_--(ln^K+l ;A-1)+plnt]+_bK-_--l(lnA-1)';

10



With theLemma(3.1-3.3)andthetotalentropyofthreespeciesat stepn + 1, we have

THEOREM 3.1. The entropy condition (2.3) is satisfied in the KFVS scheme.

Proof. From Equations (3.11), (3.14), (3.15), (3.17), and (3.19), the new total entropy for the three

species at cell j is

H}+I = g _

=/g*'lng*'dud_+/{_'ln_'dud_+/9'lnO'dud_

< /g* Ing'dud_+ f[_In Odud_+/Olngdud_ (Lemma 3.3)

At (G n
<- H2 + _xx j-i�2 - Gj+l/2)" (Add Eqns.(3.11), (3.14) and (3.15))

Remark: the flow variables Wj n+l inside cell j at n + 1 do consist of three distinguishable species.

For any numerical scheme, basically wc are only remembering the conservative quantities inside each cell

and the entropy is a function of the conservative variables. However, beside this, the entropy concept is also

related to the information. For example, the entropy is different for a gas composed of one single color and

a gas composed of two different colors. Numerically, at the beginning of each time step, we divide the gas

into different cells. Consequently, the gases in different cells become distinguishable. For example, P_-I can

be regarded as blue, p_ as yellow and P}'+a as red. As a result, inside cell Cj at the end of time step n + 1,

thc gas p_+l is composed of three species, i.e., red, yellow and blue, and the entropy H_ _+i is the sum of the

entropies of the individual species. The distinguishable effect of particles is purely due to numerical artifacts

such as discretizcd space but they have a physical consequence. In order to remove the numerical effect at

tinm step n + 1 inside cell Cj, we can numerically erase the different "colors" of the gas. More precisely, wc

can remove the individual history of the gas inside cell Cj. As a result, the total density/5 CANNOT keep

the information of the individual densities (p*, th,p), and the equilibrium state Eq.(3.19) goes to

K+I

9__+1 = _ e-_((_-U)_+_2).

The corresponding entropy becomes

(3.21)

H = f ._ In Odud_

_K+I A

= _bin t5+ p--_--(ln-Tr - 1).

Note that for the same number of particles inside cell j at time n + 1, there is quantitative differences in the

entropies betwcen distinguishable (Eq.(3.20)) and indistinguishable (Eq.(3.21)) system. This phenomena is

related to the so-called Gibbs paradox [12].

The above post-process has no direct dynamical effect on the KFVS scheme in the updating of conserva-

tive variables, and has no effect on the proof of the entropy condition in this paper. We are perfectly allowed

to keep the individual species inside cell j at time n + 1, and there is no need to take the above post-process

to erase different colors and make them indistinguishable in terms of the updating conservative variables.

4. Conclusion. The gas-kinetic scheme provides an approximate Riemann solution for the Euler equa-

tions. The entropy condition for the Kinetic Flux Vector Splitting is proved in this paper. Based on the

positivity and entropy analysis, we can conclude that the KFVS is one of the most robust schemes for CFD

applications.
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